MMTSB
Tool Set Documentation

Difference between revisions of "Common applications of the MMTSB toolset"

From MMTSB
Jump to: navigation, search
Line 2: Line 2:
  
 
==Preparing protein simulations (from PDBfile to CHARMM trajectory):==
 
==Preparing protein simulations (from PDBfile to CHARMM trajectory):==
This tutorial illustrates the step-by-step instructions to perform explicit solvent molecular dynamics of a protein solvated in a cubic box of water at 0.15 mM ionic NaCl concentration using MMTSB toolset.  The set of files and scripts provided below can be easily adapted  to perform dynamics of any other protein of interest with different solvent box shapes and sizes. Here, we use RNAase peptide as an example.
+
This tutorial illustrates the step-by-step instructions to perform explicit solvent molecular dynamics of a protein solvated in a cubic box of water at 0.15 mM ionic NaCl concentration using the MMTSB toolset.  The set of files and scripts provided below can be easily adapted  to perform dynamics of any other protein of interest with different solvent box shapes and sizes. Here, we use RNAase peptide as an example.
  
 
Step-by-step instructions are as follows:
 
Step-by-step instructions are as follows:
 
   
 
   
1. Download RNAse A crystal structure, 1RNU.pdb protein database (http://www.rcsb.org/pdb/home/home.do).
+
1. Download RNAse A crystal structure, 1RNU.pdb[http://www.rcsb.org/pdb/explore/explore.do?structureId=1RNU] protein database.
  
2. Extract first 13 residues using convpdb.pl w/ charmm22 output, centered and with segnames:
+
2. Extract first 13 residues using convpdb.pl in te charmm22 format, centered and with segnames:
  
 
convpdb.pl -center -sel 1:13 -segnames -out charmm22 -nohetero 1RNU.pdb > 1rnu_cpep.pdb
 
convpdb.pl -center -sel 1:13 -segnames -out charmm22 -nohetero 1RNU.pdb > 1rnu_cpep.pdb
Line 25: Line 25:
 
             1rnu_cpep.pdb > 1rnu_cpep_mmtsbmin.pdb
 
             1rnu_cpep.pdb > 1rnu_cpep_mmtsbmin.pdb
  
5. Write protein structure file (PSF) for use in later steps involving: (1) viewing structures in VMD and (2) determining how  
+
5. Write protein structure file (PSF) for use in later steps involving: (1) viewing structures in VMD and (2) determining how many ions to add for making the charge  on the system neutral.
many ions to add for making the charge  on the system neutral.
 
  
  
Line 35: Line 34:
 
                 1rnu_cpep_mmtsbmin.pdb > 1rnu_cpep_mmtsbmin.psf
 
                 1rnu_cpep_mmtsbmin.pdb > 1rnu_cpep_mmtsbmin.psf
  
In the following steps 6-8 of the tutorial, we will use the mmtsb tools to solvate our  
+
In the following steps 6-8 of the tutorial, we will use the MMTSB tools to solvate our  
 
minimized peptide. First we'll add solvent and ions to the system. Then we'll minimize the complete  
 
minimized peptide. First we'll add solvent and ions to the system. Then we'll minimize the complete  
 
system with harmonic restraints on the peptide. The system will then be ready for molecular dynamics runs.
 
system with harmonic restraints on the peptide. The system will then be ready for molecular dynamics runs.
Line 57: Line 56:
  
 
$CHARMMEXEC pdbfile=1rnu_cpep_mmtsbmin psffile=1rnu_cpep_mmtsbmin boxsize=38.74355 <how_many_ions_to_add.inp> how_many_ions_to_add.log &
 
$CHARMMEXEC pdbfile=1rnu_cpep_mmtsbmin psffile=1rnu_cpep_mmtsbmin boxsize=38.74355 <how_many_ions_to_add.inp> how_many_ions_to_add.log &
 +
 +
Note: Use PSF file of the protein only and NOT one with the solvent at this step.
  
 
Now grep information about the number of ions from the log file "how_many_ions_to_add.log"
 
Now grep information about the number of ions from the log file "how_many_ions_to_add.log"
Line 68: Line 69:
 
grep "NNEG ->"  how_many_ions_to_add.log | tail -1
 
grep "NNEG ->"  how_many_ions_to_add.log | tail -1
  
Now finally add ions to the system with waterbox:
+
Now finally add ions to the system with waterbox (in this case 5 SOD and 6 CLA ions):
  
 
convpdb.pl -ions SOD:5=CLA:6 1rnu_cpep_solv.pdb > 1rnu_cpep_solvions.pdb
 
convpdb.pl -ions SOD:5=CLA:6 1rnu_cpep_solv.pdb > 1rnu_cpep_solvions.pdb
Line 83: Line 84:
 
8. Now minimize with restraints and SHAKE constraints using PME electrostatics
 
8. Now minimize with restraints and SHAKE constraints using PME electrostatics
  
minCHARMM.pl -par minsteps=0,sdsteps=500,sdstepsz=0.02 \
 
    -par trunc=switch,cutnb=12,cuton=8,cutoff=11 \
 
    -par param=22x,cmap\
 
    -par xtop=top_all27_prot_na.rtf \
 
    -par xpar=par_all27_prot_na.prm \
 
    -par blocked,nter=none,cter=ct3 \
 
    -par shake,boxsize=38.743553,nblisttype=bycb \
 
    -cons heavy self 1:13_5 \
 
    -cmd mmtsbminsolvate.inp -log mmtsbminsolvate.log \
 
      1rnu_cpep_solvions.pdb > 1rnu_cpep_solvions_min.pdb
 
  
9. Running dynamics on this peptide in water using the mmtsb tool mdCHARMM.pl.
+
              minCHARMM.pl -par minsteps=0,sdsteps=500,sdstepsz=0.02 \
 +
              -par trunc=switch,cutnb=12,cuton=8,cutoff=11 \
 +
              -par param=22x,cmap\
 +
              -par xtop=top_all27_prot_na.rtf \
 +
              -par xpar=par_all27_prot_na.prm \
 +
              -par blocked,nter=none,cter=ct3 \
 +
              -par shake,boxsize=38.743553,nblisttype=bycb \
 +
              -cons heavy self 1:13_5 \
 +
              -cmd mmtsbminsolvate.inp -log mmtsbminsolvate.log \
 +
              1rnu_cpep_solvions.pdb > 1rnu_cpep_solvions_min.pdb
 +
 
 +
9. Run dynamics on this peptide in water using the mmtsb tool mdCHARMM.pl.
  
 
In this section we will take the configuration we just generated and run 2 ps of  
 
In this section we will take the configuration we just generated and run 2 ps of  
Line 112: Line 114:
 
               1rnu_cpep_solvions_min.pdb
 
               1rnu_cpep_solvions_min.pdb
  
10. Restart dynamics and run perform production dynamics using NVT ensemble:
+
10. Restart dynamics from previous step and perform production dynamics using NVT ensemble:
  
 
               mdCHARMM.pl  -par dynsteps=1000,dyntemp=298,\  
 
               mdCHARMM.pl  -par dynsteps=1000,dyntemp=298,\  
Line 126: Line 128:
 
             -restout 1rnu_cpep_d1.res
 
             -restout 1rnu_cpep_d1.res
  
11. Visualization of dynamics trajectory.
+
11. Visualize the dynamics trajectory.
  
 
After running the dynamics, visualize the trajectory with vmd. To look at molecular dynamics trajectories with vmd, you need to read in a pdb and a dcd file. The following command will  
 
After running the dynamics, visualize the trajectory with vmd. To look at molecular dynamics trajectories with vmd, you need to read in a pdb and a dcd file. The following command will  
Line 133: Line 135:
 
vmd 1rnu_cpep_solvions_min.pdb 1rnu_cpep_d1.dcd
 
vmd 1rnu_cpep_solvions_min.pdb 1rnu_cpep_d1.dcd
  
12. Analyze trajectory
+
12. Analyze the trajectory
 
 
Process  dcd trajectory to extract root mean square deviation of the peptide CA atoms with respect to the starting conformation as a function of time.
 
  
calculates the RMSD with respect to reference PDB after least-squares superposition
+
Process  dcd trajectory to extract root mean square deviation of the peptide CA atoms with respect to the reference PDB after least-squares superposition as a function of time.
  
 
analyzeCHARMM.pl -rms -sel CA -comp 1rnu_cpep_solvmin.pdb -psf 1rnu_cpep_solvmin.psf 1rnu_cpep_d1.dcd >rms.out &
 
analyzeCHARMM.pl -rms -sel CA -comp 1rnu_cpep_solvmin.pdb -psf 1rnu_cpep_solvmin.psf 1rnu_cpep_d1.dcd >rms.out &

Revision as of 13:11, 11 July 2009

Page currently under construction!!!

Preparing protein simulations (from PDBfile to CHARMM trajectory):

This tutorial illustrates the step-by-step instructions to perform explicit solvent molecular dynamics of a protein solvated in a cubic box of water at 0.15 mM ionic NaCl concentration using the MMTSB toolset. The set of files and scripts provided below can be easily adapted to perform dynamics of any other protein of interest with different solvent box shapes and sizes. Here, we use RNAase peptide as an example.

Step-by-step instructions are as follows:

1. Download RNAse A crystal structure, 1RNU.pdb[1] protein database.

2. Extract first 13 residues using convpdb.pl in te charmm22 format, centered and with segnames:

convpdb.pl -center -sel 1:13 -segnames -out charmm22 -nohetero 1RNU.pdb > 1rnu_cpep.pdb

3. Visualize peptide fragment with VMD to make sure its what you want.

4. Minimize

            minCHARMM.pl -par minsteps=0,sdsteps=100,sdstepsz=0.02 \
          -par trunc=switch,dielec=rdie,cutnb=12,cuton=8,cutoff=11 \
          -par param=22x,cmap\
          -par xtop=top_all27_prot_na.rtf \
          -par xpar=par_all27_prot_na.prm \
          -par blocked,nter=none,cter=ct3 \
          -cons heavy self 1:13_5 -log mmtsbmin.log \
            1rnu_cpep.pdb > 1rnu_cpep_mmtsbmin.pdb

5. Write protein structure file (PSF) for use in later steps involving: (1) viewing structures in VMD and (2) determining how many ions to add for making the charge on the system neutral.


                genPSF.pl  -par param=22x,cmap\
              -par xtop=top_all27_prot_na.rtf \
              -par xpar=par_all27_prot_na.prm \
              -par blocked,nter=none,cter=ct3 \
               1rnu_cpep_mmtsbmin.pdb > 1rnu_cpep_mmtsbmin.psf

In the following steps 6-8 of the tutorial, we will use the MMTSB tools to solvate our minimized peptide. First we'll add solvent and ions to the system. Then we'll minimize the complete system with harmonic restraints on the peptide. The system will then be ready for molecular dynamics runs.

6. Add solvent box

First use convpdb.pl to solvate and add segment names - extract boxsize!

convpdb.pl -out charmm22 -solvate -cubic -cutoff 8 1rnu_cpep_mmtsbmin.pdb | \ convpdb.pl -out charmm22 -segnames > 1rnu_cpep_solv.pdb

Find that boxsize is a:

In this case it is 38.743553 Å cube. Note down this number.

7. Add ions at 0.15 mM concentration to the cubic box of water generated above

Counterions are added to solvated system by specifying the number of positive (SOD) and/or negative ions (CLA). Determine how many and which type of ions we need to neutralize this system using following CHARMM script.

$CHARMMEXEC pdbfile=1rnu_cpep_mmtsbmin psffile=1rnu_cpep_mmtsbmin boxsize=38.74355 <how_many_ions_to_add.inp> how_many_ions_to_add.log &

Note: Use PSF file of the protein only and NOT one with the solvent at this step.

Now grep information about the number of ions from the log file "how_many_ions_to_add.log"

Number of positive ions (SOD) to add:

grep "NPOS ->" how_many_ions_to_add.log | tail -1

Number of negative ions (CLA) to add:

grep "NNEG ->" how_many_ions_to_add.log | tail -1

Now finally add ions to the system with waterbox (in this case 5 SOD and 6 CLA ions):

convpdb.pl -ions SOD:5=CLA:6 1rnu_cpep_solv.pdb > 1rnu_cpep_solvions.pdb

Generate complete PSF of the system including waterbox and ions.

             genPSF.pl  -par param=22x,cmap,\
            -par xtop=top_all27_prot_na.rtf \
            -par xpar=par_all27_prot_na.prm \
            -par blocked,nter=none,cter=ct3 \
              1rnu_cpep_solvions.pdb>1rnu_cpep_solvions.psf


8. Now minimize with restraints and SHAKE constraints using PME electrostatics


             minCHARMM.pl -par minsteps=0,sdsteps=500,sdstepsz=0.02 \ 
             -par trunc=switch,cutnb=12,cuton=8,cutoff=11 \ 
             -par param=22x,cmap\ 
             -par xtop=top_all27_prot_na.rtf \ 
             -par xpar=par_all27_prot_na.prm \ 
             -par blocked,nter=none,cter=ct3 \ 
             -par shake,boxsize=38.743553,nblisttype=bycb \ 
             -cons heavy self 1:13_5 \ 
             -cmd mmtsbminsolvate.inp -log mmtsbminsolvate.log \ 
              1rnu_cpep_solvions.pdb > 1rnu_cpep_solvions_min.pdb

9. Run dynamics on this peptide in water using the mmtsb tool mdCHARMM.pl.

In this section we will take the configuration we just generated and run 2 ps of molecular dynamics on this system:

             mdCHARMM.pl  -par dynsteps=1000,dynens=NPT,dynitemp=298,dyneqfrq=1000 \
            -par dynnose=1,dynoutfrq=10,dynpress=1,echeck=20000 \ 
            -par trunc=switch,cutnb=12,cuton=8,cutoff=11 \
            -par param=22x,cmap \
            -par xtop=top_all27_prot_na.rtf \ 
            -par xpar=par_all27_prot_na.prm \
            -par blocked,nter=none,cter=ct3 \
            -par shake,boxsize=38.743553,nblisttype=bycb \
            -cmd mmtsbdynsolvate.inp -log mmtsbdynsolvate.log \
            -enerout 1rnu_cpep_d0.ene -trajout 1rnu_cpep_d0.dcd \
            -restout 1rnu_cpep_d0.res -final 1rnu_cpep_d0.pdb \
             1rnu_cpep_solvions_min.pdb

10. Restart dynamics from previous step and perform production dynamics using NVT ensemble:

             mdCHARMM.pl  -par dynsteps=1000,dyntemp=298,\ 
            -restart 1rnu_cpep_d0.res -final - 1rnu_cpep_solvions_min.pdb \
            -par trunc=switch,cutnb=12,cuton=8,cutoff=11 \
            -par param=22x,cmap\
            -par xtop=top_all27_prot_na.rtf \
            -par xpar=par_all27_prot_na.prm \
            -par blocked,nter=none,cter=ct3 \
            -par shake,boxsize=38.743553,nblisttype=bycb \
           -cmd mmtsbdynsolvate1.inp -log mmtsbdynsolvate1.log \
            -enerout 1rnu_cpep_d1.ene -trajout 1rnu_cpep_d1.dcd \
            -restout 1rnu_cpep_d1.res

11. Visualize the dynamics trajectory.

After running the dynamics, visualize the trajectory with vmd. To look at molecular dynamics trajectories with vmd, you need to read in a pdb and a dcd file. The following command will accomplish this.

vmd 1rnu_cpep_solvions_min.pdb 1rnu_cpep_d1.dcd

12. Analyze the trajectory

Process dcd trajectory to extract root mean square deviation of the peptide CA atoms with respect to the reference PDB after least-squares superposition as a function of time.

analyzeCHARMM.pl -rms -sel CA -comp 1rnu_cpep_solvmin.pdb -psf 1rnu_cpep_solvmin.psf 1rnu_cpep_d1.dcd >rms.out &

Visualize data using Gnuplot software.

gnuplot pl ‘rms.out’ u 2:3 w lp

Preparing protein:DNA simulations (from PDBfile to CHARMM trajectory):

replace text

Preparing protein simulations for replica-exchange:

replace text

Visualizing the electrostatic surface potential of a macromolecule:

First, we select the protein from a PDB file (1enh.pdb), add hydrogen atoms, and center the molecule at the origin. Then, we calculate the electrostatic potential on a grid and generate the molecular surface of the protein. Finally, we view the molecule in VMD, projecting the electrostatic potential onto the molecular surface.

convpdb.pl -nsel protein 1ENH.pdb | complete.pl | convpdb.pl -center > 1enh.center.pdb
pbCHARMM.pl -emap phi.dx 1enh.center.pdb
pbCHARMM.pl -dx -grid epsx grid.dx 1enh.center.pdb
vmd 1enh.center.pdb phi.dx grid.dx

In vmd, select:
Graphics/Representations/Drawing Method [Surf]
Graphics/Representations/Coloring Method [Volume]


For a more thorough description, see the MMTSB Tool Set - Continuum electrostatics calculations tutorial.


For more examples, download and follow the tutorials prepared for past MMTSB workshops.